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Boundary modeling is a crucial part of natural resource characterization. Geostatistical
estimation and simulation employ stationary random function models within volumetric
boundaries to predict regionalized petrophysical properties of interest. Moreover, there is often
significant global uncertainty in volumetric boundaries depending on the amount of sample and
geological data available. There is a growing need for fast, objective, flexible, and geologically
realistic boundary models accounting for global uncertainty. This paper presents and describes
a novel boundary modeling algorithm with these features. Explicit or manually digitized
volumetric boundaries are common, but do not capture volumetric uncertainty since these
methods are time consuming, subjective, and non-repeatable. BOUNDSIM is an implicit
boundary modeling methodology that automates the construction of fast, objective, and flexible
probabilistic boundary surfaces built at any desired position of risk and resolution. Examples
are presented to illustrate the methodology, practice, and results.

Background

Boundary modeling is an essential preliminary step for numerical mineral deposit and petroleum
reservoir modeling. Geostatistical estimation and simulation of petrophysical properties is
applied with stationary random functions within geometric limits imposed by volumetric
bounding surfaces. Choosing the number of domains or volumes amounts to the most important
aspect of a decision of stationarity. Boundary modeling has a significant impact on estimates of
recoverable reserves, economic forecasting, and production planning.

Two general classes of boundary modeling methods are available, explicit and implicit. The
traditional explicit method of boundary modeling implemented in nearly all general mining
software packages relies heavily on manual digitization [1, 2]. These methods present some
important practical limitations and challenges for modern resource characterization projects.
Most importantly, explicit methods are incapable of assessing global uncertainty. Implicit
methods, in contrast, are capable of automating production of multiple probabilistic boundaries
collectively representing global uncertainty. BOUNDSIM, presented in this work, is an implicit
approach.

The most important advantage of the implicit approach is access to global uncertainty, that is,
structural or geological compartmentalization uncertainty. This type of uncertainty can have a
significant influence on production uncertainty in various mining and petroleum settings. Figure
1 illustrates a schematic 2D example of an explicit boundary versus a set of implicit boundaries.
The ore-waste boundaries are to be defined from four conditioning drillholes. A typical explicit
ore-waste boundary is shown on the left. In practice, this would involve a subjective digitization
procedure. Three implicit ore-waste boundaries are shown on the right. Using the implicit
approach, constructing these boundaries is objective and fast. Most importantly, however, the
small (B1), medium (B2), and large (B3) boundary models can be adopted according to
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conservative, medium, or aggressive positions on global volumetric uncertainty. The green
arrows show any position of risk is easily assumed by expanding or contracting the boundary.
This access to uncertainty is not possible with the explicit approach.
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Figure 1: A small 2D schematic example illustrating an explicit boundary model (left) compared
to a set of implicit boundary models (right). The implicit modeling method allows easy access to
global volumetric uncertainty by expanding or contracting the boundary away from the four
conditioning drillholes (green arrows).

The Decision of Stationarity

Conventional geostatistical estimation and simulation is applied with stationary random functions
SRF’s. The decision of stationarity is one of deciding the number of SRF’s appropriate for
modeling a single attribute. Separate decisions of stationarity are made for each attribute of
interest. These decisions always balance the level of homogeneity with the number of available
data within potentially separate domains. Consider the extremes. The most homogenous domain
would surround a single sample datum; however, such a solitary sample is inadequate to reliably
parameterize the set of SRF models, one for each sample location. By pooling all possible sample
data together, there may be an adequate database for reliable inference of the single SRF model,
but then there also exists a significant risk of masking key heterogeneous or compartmentalized
features that could have otherwise been modeled by more than one SRF. Each setting involves a
unique balance of these two factors, the degree of homogeneity and amount of available data.

Decisions of stationarity are made in a staged fashion according to a flowchart like the one shown
in Figure 2. Moving through the scale, decisions of stationarity increase in resolution as the
boundary surfaces surrounding assumed homogeneous regions shrink. In the first stage, for
example, geological homogeneity is assumed and a single SRF is adopted inside a bounding
surface that approximates the global mineral or hydrocarbon accumulation limits (red line). The
enclosed SRF first order expected value and second order covariance function are then inferred
from the available sample data to predict at unsampled locations within these limits. Further
down the scale in Figure 2, higher resolution decisions of stationarity associated with more than
one boundary surface are considered when the decision of stationarity at the previous level on the
flowchart is deemed inappropriate in that there are enough geological data and information to
suggest and model more than one SRF. The next stage could involve defining a separate SRF
model boundary surfaces enclosing net and non-net material (broken green line). And continuing
to follow Figure 2 as an example, geological homogeneity can be assumed and SRF’s can be
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adopted inside boundaries outlining structural or systems tract boundaries (LST ~ low-stand
systems tract; FSST ~ falling stage systems tract; HST ~ high-stand systems tract; TST ~
transgressive systems tract). These boundaries are shown with broken yellow lines. Finally, at the
highest resolution, distinct rocktype or facies boundaries could be defined to separate the SRF
models.
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Figure 2: An illustration of the geometrically staged fashion in which decisions of stationarity are
made. At each stage, different boundary surfaces are defined and modeled.

Explicit or implicit boundary modeling constructs the boundaries needed to separate different
SRF models according to the prior decision of stationarity and position on a scale similar to what
is shown in Figure 2.

Stochastic or probabilistic boundary modeling methods for rocktype and facies limits at the last
stage of Figure 2 are already quite mature. There is a vast library of literature and implementation
procedures for various cell-based methods such as sequential indicator simulation [3, 4, 5] and
perhaps more geologically realistic object-based methods [3, 6, 7]. The algorithms and tools for
stochastic structural surface modeling are becoming increasingly mature [8, 9, 10] and are a
viable alternative to deterministic methods. However, there is little emphasis in the literature on
probabilistic boundary modeling methods for the larger-scale types of boundaries referred to in
the earlier stages of Figure 2. These types of boundaries are often drawn explicitly or
deterministically with no direct account for global uncertainty. This work especially addresses the
need for objective and probabilistic large-scale boundary surfaces.

Boundary Modeling Criteria

Before reviewing explicit boundary modeling in more detail, showing existing implicit methods,
or presenting BOUNDSIM, six different criteria for viable boundary modeling algorithms are first
defined:

1. Simplicity: The algorithm should be relatively straightforward to implement;
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2. Speed: The algorithm should be capable of creating multiple boundary models in a
reasonable amount of time;

3. Subjectivity: The algorithm should avoid personality and subjective interpretation in order
to be repeatable;

4. Flexibility: The algorithm should be readily amenable to incorporate incremental geological
data and information;

5. Uncertainty: The algorithm should allow for the access to boundary uncertainty
quantification; and

6. Realistic: The algorithm should generate geologically plausible boundary models.

The explicit method is first described. The implicit method is then described; two currently
available methods as well as the new BOUNDSIM method are presented. Table 1 shows a report
card for evaluating these different boundary modeling methods.

. . L . Access to .
Simplistic Fast Obijective Flexible Uncertainty Geological

Boundary Modeling
Approach
Explicit
Leapfrog
Implicit | Potential-Field
BOUNDSIM

Table 1: Report card for evaluating various boundary modeling algorithms in this work.

Explicit Boundary Modeling

The traditional approach to modeling ore-waste or hydrocarbon bearing boundaries is through a
3D triangulation of polygons or strings representing the solid body. The polygonal/string outlines
or poly-lines are drawn by a geologist or engineer on a series of offset cross sections using expert
judgment. The cross sections are then joined by tie-lines in order to guide the connectivity
between poly-line sections during the 3D triangulation of the solid boundary. This procedure is
referred to as an explicit model of the solid since the bounding surface is defined unequivocally
by the 3D coordinates positioning the patchwork of triangles. Figure 3 illustrates the explicit
boundary modeling procedure for a typical vein-type mineral deposit.

OFFSET DISTANCE \

Figure 3: An illustration of the explicit boundary modeling method using poly-lines and tie-lines.
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Although the explicit boundary modeling procedure is straightforward, there are a number of
important limitations. These include significant time consumption, subjectivity and non-
repeatability, inflexibility, and inability to access boundary uncertainty. Table 2 summarizes the
report card for the explicit approach. Some comments then follow.

ESUTEER) (IR i) Simplistic Fast Objective Flexible Access_to Geological
Approach Uncertainty
Explicit Ves no no no no yes
Leapfrog
Implicit | Potential-Field
BOUNDSIM

Table 2: Report card for evaluating the explicit boundary modeling procedure.
Simplistic
Although the procedure may be tedious, the explicit method of digitizing polygons on several

cross sections is definitely simple. Indeed, this is the main reason for its popular implementation
in practice.

Time Consuming

Drawing the 2D poly-lines and tie-lines demands an overwhelming amount of time in many
practical natural resource accumulations. For especially complex mineralization or layering with
several intricate compartments of ore or hydrocarbon, it is not uncommon for a professional to
spend up to three months developing a solid boundary model. There is certainly some shared
aspiration to expedite this step in the overall workflow of a natural resource study.

Subjectivity and Non-Repeatability

The volume of mineralization is essentially composed of a prolonged series of small subjective or
deterministic decisions as each corner of the poly-line from each cross section is chosen by a
professional geologist or engineer. Inevitably, a signature of the interpreter is imparted to the
boundary. For example, geologists, geophysicist, and engineers may all consistently generate
significantly different boundary models given the same conditioning information. There is a need
to generate objective boundary surfaces.

Inflexibility

It is very difficult to update an explicit boundary model upon the advent of new drillhole or well
data. Typically, modifications are undertaken on campaigns [1]. There is a desire to immediately
update boundary models as any new information becomes available.

Inaccessible Uncertainty

Since it is rather onerous to construct multiple explicit global accumulation boundary models, it is
then difficult to assess the global uncertainty in these geometric limits between sample data.
These uncertainties can be a major source of uncertainty in many situations. For example, with a
vein-type gold deposit, the volume of mineralization is a vital economic indicator for project
management. Ignoring the volumetric uncertainty by considering just one explicit boundary
modeling may devastate the venture. There is a need to account for boundary uncertainty.

Geologically Realistic

Although explicit procedures are time consuming, subjective, non-repeatable, inflexible, and
unable to fairly access global uncertainty, the resulting boundaries will be geologically realistic
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especially when interpreted by the same individual generating the boundary. There is direct
control of this goal in the digitization procedure.

Other than tediously redrawing all of the poly-lines and tie-lines and re-triangulating, there is no
straightforward way to incorporate multiple possible boundary realizations representing
uncertainty — this is indeed the single most important limitation of the explicit procedure.

Implicit Boundary Modeling

A new implicit surface modeling framework is developed. Sample drillhole or well data are used
to interpolate what is referred to as a volume function. The boundary or zero-surface from the
volume function is extracted at any desired resolution. Figure 4 shows a simple 2D example. The
volume function interpolated from the sample data (circles) is shown at the top left. The color
scale is symmetric ranging from highly negative (blue) to highly positive (red) values and is
centered at zero (green). Three alternative boundary surfaces are extracted from this volume
function at increasingly higher resolutions.

The advantages of the implicit boundary modeling approach can easily be seen through the small
example in Figure 4. Alternative boundary geometries can be generated by interpolating the
volume function at different resolutions, with different anisotropy, and with different expected
values. Figure 4 illustrates the zero-surface boundary extracted from low, medium and high
resolutions. As the resolution of the volume function increases, the boundary more closely honors
sample and is smoother and perhaps more realistic. Anisotropic boundaries can be generated with
anisotropic distance weighting for constructing the volume function. Inflated or contracted
boundaries can be extracted from volume functions interpolated with higher or lower expected
values. This last advantage is the essence for constructing probabilistic boundaries.

POSITIVE NEGATIVE

BOUNDARY MODEL |

Boundary Modelll | | Boundary

WASTE

Figure 4: An illustration of the implicit boundary modeling method using a volume function and
different extraction resolutions.
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The implicit boundary modeling approach is fairly new in natural resource evaluation. However,
there are a few well established implementations currently available. In this paper, we will review
the Leapfrog [11, 12, 13] and Potential-Field [16] methodologies. Of course then the proposed
BOUNDSIM methodology is presented in all necessary detail. These are then evaluated according
to the criteria in Table 1.

Leapfrog Methodology

Leapfrog provides one of the first implicit boundary modeling implementations within a
commercial software package. Overall, there are five major steps to the Leapfrog methodology:
(1) data validation and compositing, (2) interpolation and meshing, (3) incorporating geological
morphology, (4) interpolating the geological morphology, and (5) morphologically constrained
interpolation. The method generates realistic boundary models consistent with the sample data
and any possible morphological interpretation much quicker and more objectively than any
explicit model. Figure 5 shows some grade boundaries generated by Leapfrog software for the
Wallaby gold deposit, Australia. The grade boundaries on the left are interpolated without any
geological interpretation whereas the boundaries on the right are include the morphological shape
constraints represented by the lightly shaded gray curvilinear planes.

The essential ingredient for implementing Leapfrog technology is the use of radial basis function
(RBF) interpolation of the volume function [12, 14]. RBF interpolation is similar to the dual
formulation of kriging where the estimates are weighted linear combinations of covariance
functions [15]. In contrast to dual kriging, however, RBF interpolation does not derive the
covariance functions from the data — they correspond to a simple isotropic linear covariance
function. Therefore, there is no possibility of incorporating anisotropy into the boundaries
through the RBF interpolation. Instead, it is injected manually in the form of deterministic
morphological constraints.

(Source: E J Cowan et al [13])

Figure 5: An illustration of implicit boundary modeling without (left) and with (right)
geomorphologic constraints as implemented by Leapfrog software.
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Leapfrog technology successfully overcomes many of the explicit boundary modeling limitations.
The boundaries are certainly built quickly relative to the explicit method, the modeling process is
objective and repeatable, and new sample and geological information can be easily incorporated.
However, there is still no provision for the generation of multiple objective probabilistic
boundaries representing the inherent uncertainty in these surfaces. Different boundary surfaces
can be constructed based on different deterministic geological trends and morphological analyses;
however, these interpretations still suffer from subjectivity and are not an objective quantifiable
measure of boundary uncertainty. The implicit boundary modeling methodology presented in the
next section will indeed allow for the quantification of this uncertainty.

Potential-Field Methodology

The Potential-Field is an implicit 3D scalar field from which a geological interface is extracted as
a particular iso-surface. Overall, there are five major steps to the Potential-Field methodology: (1)
collect surface intersection and structural orientation data, (2) determine the form of the locally
varying drift, (3) infer the potential-field covariance function, (4) interpolate the potential field
with a universal cokriging approach, and (5) visualize the uncertainty in the boundary surface
placement. Figure 6 shows a plan view and cross section (at N6) through a 3D geological
boundary model generated by the Potential-Field approach for the Broken Hill district. There are
a total of seven different geological units. The white line represents the location of a fault and the
black curved line is the location of a seismic line.

(Source: J P Chiles et al [16])
Figure 6: An illustration of implicit boundary modeling results with the Potential-Field method.

A key feature of the Potential-Field method is the use of universal cokriging to optimally account
for both intersection and structural dip data. This approach is motivated by the fact that there are
no direct samples of the potential field to condition a direct kriging. The structural data is
interpreted as the gradient of the potential field. The execution of cokriging with gradient data is
described in [15]. The method is not limited to intersection and structural data alone. Faults,
seismic, and other available mining data can be incorporated into the interpolation procedure
using a similar approach.
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The Potential-Field methodology is quite flexible allowing various sources of data to enter into
the interpolation of the potential field from which bounding surfaces are extracted. The
boundaries are still built quickly relative to the explicit method, the modeling process is objective
and repeatable, and various sources of geological information can be incorporated. However, the
procedure is not simple. The covariance of the potential field is particularly difficult to infer since
there are no hard potential field samples available.

Table 3 shows the report card for the Leapfrog and Potential-Field implicit boundary modeling
methodologies. The explanation of these evaluations follows.

Boungary Raceeliy Simplistic Fast Objective Flexible A EEEII Geological
pproach Uncertainty
Explicit yes no no no no yes
Leapfrog yes yes yes yes no yes
Implicit | Potential-Field no yes yes yes yes yes
BOUNDSIM

Table 3: Report card for evaluating the Leapfrog and Potential Field implicit boundary modeling
methods.

Simplicity

The implicit boundary modeling procedure is more sophisticated and challenging to implement
properly. Collecting the conditioning data and interpolating a volume function involve some
strong decisions about the geology of the deposit. The Leapfrog method can be implemented

easily with the software available; however, the Potential-Field method is particularly challenging
to implement.

Speed

Coding and interpolating the sample data to obtain the volume function or potential field are the
most time consuming steps involved in the implicit method. However, this time commitment is
practically reasonable and quite small relative to the alternative explicit approach. This relative
advantage is the case especially for complex geological settings.

Obijectivity and Repeatability

The explicit and implicit method must both necessarily create boundaries tied to some
conditioning data. However, away from sample locations, explicit surfaces are digitized
subjectively and manually whereas implicit surfaces are more objectively interpolated according
to the estimation technique utilized. Although there are some choices involved in choosing and
setting parameters for an interpolation technigue, the extracted boundary surface depends solely
on the resulting volume function. Of course, this more objective process can easily be automated
and repeated since the estimation algorithm essentially remains the same.

Flexibility

The implicit method is extremely flexible. Different boundary geometries and sizes are integrated
via the interpolation algorithm and can be extracted at any desired resolution. Various different
sources and qualities of geological data and interpretation can be integrated. Updating an implicit
boundary model upon the advent of new drillhole or well data is straightforward. Attribute grade
boundaries can also be constructed.
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Access to Uncertainty

The most important advantage of the implicit method is access to boundary uncertainty — explicit
approaches are not capable of this. Nonetheless, the Leapfrog methodology does not provide any
avenue for probabilistic boundaries accounting for uncertainty. The Potential-Field is capable of
this through the kriging variance.

Geologically Realistic

Similar to explicit procedures, implicit boundary modeling methods are capable of geologically
realistic bounding surfaces. The control over geological interpretation within the explicit method,
however, is much higher than for more objective implicit methods.

The implicit BOUNDSIM algorithm described in this work passes all categories on the report card
in Table 1. Unlike the Potential-Field method, it is relatively straightforward to implement and
unlike the Leapfrog method, the emphasis is on probabilistic boundaries. BOUNDSIM is now
described in all necessary detail.

BOUNDSIM Methodology

There are seven major steps to the methodology: (1) make a decision of stationarity, (2) collect all
sample and geological information, (3) code all the relevant sample data for conditioning volume
function control points, (4) quantify the uncertainty in the expected volume function value, (5)
decide on the domain, (6) interpolate the volume function control points within the domain, and
(7) extract the boundary surface. The advantage of the BOUNDSIM methodology lies in step (4)
and (6) where the ability to capture boundary uncertainty is incorporated.

The BOUNDSIM methodology is demonstrated with a simple 3D example. The example deals
with a synthetically created spherical ore body within a typical XYZ coordinate system in units of
meters (m). The spherical radius of the ore body is 20m. The grid resolution is 1m in each
dimension. Figure 7 shows lower and upper XY, XZ, and YZ sections through this ore body. Since
the ore body is symmetric in all sets of two dimensions, the cross sections are all and should all
be the same. The model in Figure 7 represents the true underlying geology typically inaccessible
in practice. In reality, only a limited number of samples or drillholes are available. A total of 100
exactly vertical drillholes are taken here. The assay data consists of a single indicator variable (0
for ore; 1 for waste) at the 1m grid resolution. Therefore, compositing is not necessary. The
location of these 100 drillholes on the XY cross sections is shown in Figure 7.

The goal of the methodological presentation and this example is to model the true spherical
boundaries. Of course, since there are only limited drillholes, the resulting boundary models will
not be exactly spherical. Nonetheless, the uncertainty manifested from data paucity should and
will be quantified. The BOUNDSIM implicit boundary modeling approach presented here is
capable of quantifying this inherent uncertainty. Each of the seven steps mentioned above are
now described in all necessary detail and illustrated with the example.
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Figure 7: The true and practically inaccessible true spherical lithology model and 100 sample
drillhole locations for the boundsim methodology example.

I. Decision of Stationarity

The first step of the procedure is to make a necessarily subjective decision of stationarity. These
choices must always balance the degree of homogeneity and number of available data within
potentially separate units of material. Consider the extremes. The most homogenous boundaries
would surround any single sample datum; however, one sample is inadequate for accurately
characterizing a stationary random function model applicable within such small boundaries. In
contrast, by pooling all the data together, there may be an adequate database for reliable
inference; but then there is also a significant risk of masking important heterogeneous features
that could have otherwise been modeled by more than one stationary population. Each geological
and engineering setting balances these two extremes uniquely. These decisions should be revised
according to new geological information and/or sample data.

The decision of stationarity in this example is simple. Two homogeneous populations are decided
on: ore and waste. The degree of homogeneity and pool of data within each assumed stationary
population are both deemed sufficient in this scenario. In fact, all net (ore) vs. non-net (waste)
boundary modeling problems like this example must adopt a similar decision of dual stationary
populations. The modeling of boundaries certainly does not change this decision of stationarity —
it merely defines the bounding surfaces that limit the spatial application of each corresponding
stationary random function. The assay data within the ore and waste region would then be is used
to define the stationary random function and perform estimation and simulation within the limits
defined by the boundary model.

A dual net to non-net or ore-waste type of stationarity decision fits in the second position before
systems tract layer modeling and facies modeling in Figure 2. That is, the global accumulation
limits (first stage) are set, the presence of systems tracts or other structural layering as well as
facies is ignored, and just a net and non-net rocktype boundary is needed.
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I1. Geological Information

The data used to condition the boundary modeling procedure are an amalgamation of the subsets
of data subsequently used to define the stationary random function model within the modeled
boundary surfaces. It is essentially the spatial gradient between contrasting rocktypes that allows
the implicit method to define and extract boundary surfaces. All 100 drillholes or 5100 rocktype
samples are used to construct the ore-waste boundary model in the example. In practice, such
drillhole data would be subjected to a lengthy process of compositing, cleaning, debiasing,
visualization, and so on.

In practice, it is both hard and soft data that should be integrated into the boundary modeling
procedure. Drillhole assays such as the rocktype variable in this example or grade attributes are
generally referred to as hard data. Additional information contained in analog outcrops,
stratigraphic interpretations, and seismic campaigns are generally referred to as soft data. Only
hard rocktype variable data are considered in this example. The incorporation of soft data within
the BOUNDSIM algorithm is a topic of future work.

I11. Sample Data Codes

To construct an implicit model of a boundary surface, a volume function with an iso-surface that
includes the contact points and points connecting them must be created [12]. This function is
conditioned by control points coinciding with the drillhole or well string sample locations.
However, the 0/1 indicator variable is incapable of defining a smoothly varying spatial volume
function distribution from which a contour of zero iso-surface points can be defined and
extracted. Separate regions must be specified where the volume function becomes increasingly
positive and negative away from the desired boundary. And this requires the drillhole assays to be
coded.

The volume function control codes are set to the distance between the sample location and the
nearest different rocktype location. The sign of the distance depends on the rocktype being
considered. If the location is within ore and the nearest rocktype is waste, the distance is negative;
if the location is within waste and the nearest rocktype is ore, the distance is positive. Figure 8
shows the coded drillholes from Figure 1 and the distance sign rule used in the form of a decision
matrix. The composites are taken at 1m.

== ZERO SURFACE BOUNDARY SURFACE
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DISTANCE SIGN RULE

|
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Figure 8: An illustration of the coding procedure to obtain volume function control points.
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This coding scheme is now performed using all 100 drillholes for the ore-waste regions in the
example. Figure 9 (left) shows the resulting distribution of volume function control points. Notice
the distinct population of negative (inside [ore] bounds) and positive (outside [waste] bounds)
control points. The average is +5.18 indicating that there is a more significant population of
drillholes in waste. These distance codes will be interpolated on a Cartesian grid so that a locus of
zero iso-surface points representing the ore-waste boundary can be defined and extracted
according to the grid.

IV. Volume Function Uncertainty

The uncertainty in the mean volume function control needs to be established in order to generate
probabilistic boundary models. This must be done before interpolating the volume function. An
obvious, readily available, and robust technique for quantifying uncertainty in sample statistics
like the mean is the bootstrap. Typically, the bootstrap resamples data with replacement for
multiple realizations of the mean statistic as if the sample locations were spatially independent.
However, regionalized variables such as rocktypes in this example are always spatially correlated.
Therefore, the spatial bootstrap should be implemented in order to inject correlation into the
otherwise random sampling of data [17].
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Figure 9: The distribution of conditioning volume function drillhole codes (left) and the
distribution of uncertainty in the mean drillhole code value (right).

Figure 9 (right) shows the uncertainty in the volume function control mean using the spatial
bootstrap. Based on the spatial correlation and drillhole paucity, the average volume function can
range from 0.583 to 9.845. A smooth Gaussian variogram model with no nugget and 20m
isotropic range identifies the model of spatial correlation.

The distribution in the right of Figure 9 is the critical link for generating probabilistic boundary
models. Since the boundary is always extracted at the zero iso-surface contours, interpolating the
volume function codes while honoring the different possible expected values in Figure 9 will
effectively generate different probabilistic boundary surfaces. For example, a high risk boundary
can be generated by choosing a very low quantile on this distribution which would effectively
create a larger than expected boundary surface. A high volume function quantile can be chosen to
generate lower risk or small boundaries.
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V. Domain Size

In this example the domain size is fixed; however, in practice, this step in the BOUNDSIM
algorithm is an important consideration. The global mineralization limits correspond to a cube
51m to each side.

Figure 10 shows the relationship between domain size and boundary geometry. The top row
shows simple 2D cross sectional (XZ) reference boundary models built within 5 x 3km (left), 6 x
4km (middle), and 7.5 x 4.5km (right) domains. These rocktype models are then synthetically
sampled on the same pseudo-regular 250m spacing from 0 to 5km in the X direction. These 20
drillholes are used to condition the construction of implicit boundary models for each case. The
rocktype geometry, size, and relative position within each domain are the same — only the domain
size changes. The X position of the 20 sample drillholes are also the same for each case. The
second, third, and fourth rows of Figure 1 show the corresponding distributions of volume
function codes, uncertainty in the mean volume function, and the interpolated volume function,
respectively.

We might expect the size of ore pocket to decrease since the distribution of volume function
codes is more negative. The negatives become more negative and the positives remain essentially
the same for increasing domain sizes. Here however, the area of ore pocket does not fluctuate
more than 5000m? (2 blocks) and the boundaries are virtually the same since the simple kriging
interpolation algorithm consistently produces a mean volume function value of approximately -
550 in each case. This is due to the requirement for a smooth search routine and spatial structure
yielding little total weight to the mean. The boundary would indeed decrease in the presence of
sparser sampling and subsequently higher weight to the mean. This insensitivity of simple kriging
to the volume function mean is in fact another important challenge that needs to be addressed
within the BOUNDSIM algorithm. One possible solution is post-processing the kriging map to
honor the volume function mean explicitly.
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Figure 10: The relationship between domain size and boundary model geometry is investigated
for a small 2D ore-waste cross sectional rocktype model. The same rocktype model and 20 X
location drillholes are used in each case to construct the distribution of volume function codes,
uncertainty in the mean volume function, and interpolated volume function (from top to bottom).

Notice also in Figure 10 the increase in volume function uncertainty as the domain size increases.
Certainly the uncertainty is different for different domain sizes, that is, the width of distributions
in the third row of Figure 10 is a function of the number of data or domain size. If data are sparse
enough, the uncertainty translates to significantly different probabilistic boundaries. It is possible
to use the different uncertainty to decide on the domain size ultimately used based on validation.

Probabilistic volume function models built using simple kriging are built with an attached degree
of uncertainty. Simple kriging models this uncertainty by parameterizing the assumed normal
distribution at every unsampled location with a kriging estimate and variance. One basic check is
verifying that the resulting local probability intervals are consistent with the underlying model of
uncertainty. For a specific probability interval (PI), p, we should expect to find that over multiple
realizations, the proportion of times the true value falls within the Pl is approximately equal to p
for all p in [0,1]. For instance, a symmetric Pl of 80% (p = 0.80) means that the lower and upper
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probability values in the interval is 0.10 and 0.90, respectively. Ideally, the proportion of times
the true value falls within the 80% PI1 should be close to 0.80. If this fraction is much greater than
0.80 then the probability interval is too wide and the local uncertainty may be too high.
Conversely, if the fraction is much smaller than 0.80 then the probability interval is too narrow
and the distribution has too low a variance. A cross plot of the true fraction vs. Pl for a full range
of Pls is known as an accuracy plot.

This procedure is performed for the volume function codes in Figure 10. The drillhole codes are
transformed to normal score values so that a simple kriging will identify the local conditional
normal distributions and the PI quantiles are known for checking accuracy. Figure 11 shows the
accuracy plot for all three domain sizes (in the same order) previously shown in Figure 10. As
expected from the increasing uncertainty in Figure 10, the local distributions of uncertainty grow
wider and the accuracy plot rises with increasing domain size.
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Figure 11: The accuracy plot for the interpolated volume function within each of the three
domain sizes shown previously in Figure 10.

Figure 11 suggests the volume function uncertainty is more accurate and precise within the
smaller 5 x 3km and 6 x 4km domains. However, the local distributions of volume function
uncertainty are too wide for the largest 7.5 x 4.5km domain. This provides a framework for
validating any boundary model and decision of stationarity that can be extracted from this volume
function. At the same time, this validation provides a basis for choosing an appropriate domain
size to model the subsequent boundaries within it.

V1. Volume Function Interpolation

The volume function control points must be interpolated from the drillhole locations throughout
the entire global accumulation limits in order to define all possible extents of the boundary
surface. This is done on a moderate resolution Cartesian grid network. The resulting volume
function is in effect a gradient converging on a concentrated zero-value iso-surface boundary
discretized by the resolution of the grid. The next step addresses the extraction of these zero-
surface boundaries at any desired resolution. Of course, there remains to decide an appropriate
interpolation method and parameters.

Simple kriging is chosen for interpolating the volume function due to its flexibility in the
boundary modeling capacity. Simple kriging is a linear regression technique weighting
surrounding conditioning data such that the expected variance of the estimation error is a
minimum. The simple kriging weights and estimates account for the anisotropic spatial
correlation of volume function codes and boundary models. Simple kriging also has the ability to
honor different expected volume function values which allows the boundary surfaces to inflate or
contract.
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Applying the simple kriging interpolation of volume functions for boundary modeling is
remarkably convenient. By specifying an anisotropic variogram model, one can change the
geometry of the ensuing boundary surface. For example, an ellipsoidal boundary can be generated
by specifying an anisotropic variogram while a more spherical boundary would be associated
with an isotropic variogram. By specifying diverse expected volume function values, one can also
generate different boundary surface sizes. For example, by inputting a lower (more negative)
average volume function, the boundary surface and corresponding enclosed volume increases.
This would correspond to an optimistic and high risk boundary, that is, a boundary where there is
a high probability that the true bounding surface is smaller. Similarly, higher average volume
functions are input to achieve more conservative and less risky boundaries. This remarkable
flexibility is not available with the RBF approach.

Three sets of simple kriging runs are performed in this example. The same Gaussian variogram
model with zero nugget and 20m isotropic range is used for all three volume functions since it is
known the boundary is isotropic or spherical. This knowledge is analogous to soft geological
information in practice. However, different average volume functions corresponding to the 10",
50" and 90™ percentiles or p10, p50, p90 quantiles are honored by the kriging interpolation.
These expected values are 3.99, 5.52, and 7.01, respectively.

Figures 12 to 14 show, for the same cross section orientations in Figure 7, the interpolated p10,
p50, and p90 volume functions, respectively. In each figure, the volume function color scale
ranges from -5.0 (blue) to +10.0 (red). The most important observation is perhaps the shrinking
zero-valued boundary surface contour with decreasing risk going from Figure 12 to 14. Also
notice that although an isotropic variogram model is used, the limited sample data do not generate
perfectly spherical boundaries.
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Figure 13: Interpolated volume function codes for the p50 boundary surface — moderate risk.
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Figure 14: Interpolated volume function codes for the p90 boundary surface — conservative risk.
V1. Boundary Surface Extraction

The last step involves actually extracting the zero-value boundary surface contours from the
volume function. Perhaps the simplest approach is importing the volume function from the
previous step into a commercial software package and implementing a closed surface
triangulation about the zero values. Although this is simple and direct, there is a necessary pre-
processing step. Recall Figure 4 where different boundary surfaces are shown for different
volume function resolutions. Higher resolutions are desirable for improved sample data
reproduction and more realistic smooth boundaries. The problem is that the time and computer
resources required to perform such a high resolution and necessarily smooth kriging run using a
typical project database is often too demanding. The recommended approach for this BOUNDSIM
algorithm is to generate the volume function first at a moderate resolution then downscale the
volume function to any desired resolution. The downscaled volume function can then be imported
for triangulation.

For computer storage and speed considerations, the volume function is downscaled only at
potential boundary margins. Figure 15 illustrates this downscaling procedure. A 27 cell (3 x 3 X
3) template is superimposed on each of the interpolated volume function grid cell values. Two
such templates are shown in Figure 12 — the 3 layers of 9 cells are separated vertically here just
for visualization purposes. The volume function sign in each template cell is indicated according
to the position of the boundary surface element. A typical drillhole is also sketched in. Only
connected cells hosting opposing volume function signs within these 27 cell templates are
refined. All 26 possible connections to the center (6 face, 12 edge, and 8 diagonal) are considered.
The refinement process is an inverse distance squared weighting of the 27 template volume
function grid cell values as well as any drillhole data within the template boundaries.
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Figure 15: An illustration of the downscaling approach for the interpolated volume function.

The local boundary refinement procedure is applied to each of the p10, p50, and p90 boundary
models. Figures 16 to 18 show the refined volume function within a more narrow volume
function range of -2 (blue) to +2 (red). For enhanced visualization, these refined volume function
blocks can be loaded into a commercial software package and triangulated. The high resolution
zero iso-surface ensures data reproduction and realism.
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Figure 16: Refined volume function codes for the p10 boundary surface — aggressive risk.
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Figure 18: Refined volume function codes for the p90 boundary surface — conservative risk.

Future Work

There are a number of possible avenues for future research and development. These are discussed
in this section.

So far BOUNDSIM is applied to net and non-net boundaries; however, there are many situations
where more than two stationary populations are deemed homogeneous enough to model with
separate random function models. The current binary approach could be nested according to some
geological rules in order to model more than one boundary type.

The obvious next step for maturing the BOUNDSIM algorithm is applying the procedure to real
boundary modeling problems. Vein type mineral deposits are of particular interest since the ore-
waste boundaries in these settings are primary economic feasibility and production planning
parameters. The uncertainty in such boundaries must be quantified. A small grade study could be
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performed to assess the relative importance of boundary uncertainty versus different sources of
uncertainty.

The implicit BOUNDSIM algorithm could also be applied in petroleum settings for systems tract
or structural layer boundary modeling. A major difference between petroleum and mining
problems is the relatively small number of available data. This makes parameters for kriging
much more significant and motivates the integration of soft geological data and geomorphology
trends. The BOUNDSIM procedure can even be applied for facies modeling.

The BOUNDSIM algorithm does not have to be applied to categorical variables. The same
approach for coding drillhole data, interpolating a volume function, and extracting the zero
boundary surfaces from this function is also applicable to continuous attribute grade models.
Indeed, the construction of grade shells is a powerful visualization and production planning
technique.

This paper presents a probabilistic framework for quantifying boundary uncertainty very simply
controlled by specifying different expected volume function values from a possible distribution of
uncertainty. However, an even more objective simulation framework can be developed to better
capture the physical variation of the boundary between sample data. Sequential and truncated
simulation techniques would be applicable in this capacity.

Other than specifying anisotropic boundaries through the variogram model, more advanced shape
parameterization tools and controls are immediately available through the interpolation of the
volume function with kriging. For example, universal kriging (UK) can be used to model
boundaries according to a best fit deterministic function of the coordinates. This would be similar
to the incorporation of deterministic geomorphology trends like the ones in Figure 5. Other
possible techniques include non-stationary simple kriging and kriging with an external drift.

When there is uncertainty in the global accumulation boundaries, these can also be modeled with
the BOUNDSIM approach. However, additional synthetic positive volume function drillhole
codes would be needed in order to generate the gradients from negative and positive towards the
zero value boundary contours.

Conclusion

A new solid modeling framework has been established and described in necessary detail. This
implicit boundary modeling methodology BOUNDSIM is fast, objective and repeatable, flexible,
and capable of accessing boundary uncertainty in a straightforward probabilistic manner. The
basic algorithm is now well established. A number of promising research and development
avenues have been identified. These will be developed as part of McLennan’s thesis on
stationarity.
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